IQ Percentile and Rarity Chart
These are IQs, their percentiles, and rarity on a 15 SD (e.g.
Wechsler) and 16 SD (e.g. Stanford-Binet) scale. They were calculated
using the NORMDIST function in Excel. The number of decimal places
for the rarity was varied in the hope it might be useful. You can see
why presently nobody should be able to get a deviation IQ higher than 195
(or 201 on the 16 SD scale). There are not enough people in the world
to 'beat'. Note that rarities given are of people that have a certain IQ or higher. Some people might find it more useful to know the rarity of people that have a certain IQ or lower. In that case use this example as a guide: If you want to know how many people
have IQs of 84 or lower, look at the rarity of people that have an IQ of 116
or higher. (100 - 84 = 16. 100 + 16 = 116).
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
202 |
99.9999999995% |
190,057,377,928 |
99.9999999908% |
10,881,440,294 |
201 |
99.9999999992% |
119,937,672,336 |
99.9999999862% |
7,252,401,045 |
200 |
99.9999999987% |
76,017,176,740 |
99.9999999794% |
4,852,159,346 |
199 |
99.9999999979% |
48,390,420,202 |
99.9999999693% |
3,258,706,819 |
198 |
99.9999999968% |
30,938,221,975 |
99.9999999545% |
2,196,908,409 |
197 |
99.9999999950% |
19,866,426,228 |
99.9999999327% |
1,486,736,899 |
196 |
99.9999999922% |
12,812,462,045 |
99.9999999010% |
1,009,976,678 |
195 |
99.9999999880% |
8,299,126,114 |
99.9999998548% |
688,720,101 |
194 |
99.9999999815% |
5,399,067,340 |
99.9999997879% |
471,441,334 |
193 |
99.9999999717% |
3,527,693,270 |
99.9999996913% |
323,940,499 |
192 |
99.9999999568% |
2,314,980,850 |
99.9999995524% |
223,436,817 |
191 |
99.9999999345% |
1,525,765,721 |
99.9999993536% |
154,701,783 |
190 |
99.9999999010% |
1,009,976,678 |
99.9999990699% |
107,519,234 |
189 |
99.9999998511% |
671,455,130 |
99.9999986669% |
75,011,253 |
188 |
99.9999997770% |
448,336,263 |
99.9999980964% |
52,530,944 |
187 |
99.9999996674% |
300,656,786 |
99.9999972920% |
36,927,646 |
186 |
99.9999995062% |
202,496,482 |
99.9999961624% |
26,057,620 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
185 |
99.9999992699% |
136,975,305 |
99.9999945820% |
18,457,107 |
184 |
99.9999989254% |
93,056,001 |
99.9999923799% |
13,123,126 |
183 |
99.9999984250% |
63,492,548 |
99.9999893231% |
9,366,012 |
182 |
99.9999977016% |
43,508,721 |
99.9999850966% |
6,709,882 |
181 |
99.9999966604% |
29,943,596 |
99.9999792755% |
4,825,216 |
180 |
99.9999951684% |
20,696,863 |
99.9999712895% |
3,483,046 |
179 |
99.9999930398% |
14,367,357 |
99.9999603760% |
2,523,720 |
178 |
99.9999900166% |
10,016,587 |
99.9999455198% |
1,835,530 |
177 |
99.9999857417% |
7,013,455 |
99.9999253755% |
1,340,043 |
176 |
99.9999797237% |
4,931,877 |
99.9998981672% |
982,001 |
175 |
99.9999712895% |
3,483,046 |
99.9998615605% |
722,337 |
174 |
99.9999595211% |
2,470,424 |
99.9998125011% |
533,337 |
173 |
99.9999431733% |
1,759,737 |
99.9997470088% |
395,271 |
172 |
99.9999205647% |
1,258,887 |
99.9996599197% |
294,048 |
171 |
99.9998894360% |
904,454 |
99.9995445629% |
219,569 |
170 |
99.9998467663% |
652,598 |
99.9993923584% |
164,571 |
169 |
99.9997885357% |
472,893 |
99.9991923180% |
123,811 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
168 |
99.9997094213% |
344,141 |
99.9989304314% |
93,496 |
167 |
99.9996024097% |
251,515 |
99.9985889129% |
70,867 |
166 |
99.9994583047% |
184,606 |
99.9981452833% |
53,917 |
165 |
99.9992651083% |
136,074 |
99.9975712563% |
41,174 |
164 |
99.9990072440% |
100,730 |
99.9968313965% |
31,560 |
163 |
99.9986645903% |
74,883 |
99.9958815099% |
24,281 |
162 |
99.9982112841% |
55,906 |
99.9946667250% |
18,750 |
161 |
99.9976142490% |
41,916 |
99.9931192192% |
14,533 |
160 |
99.9968313965% |
31,560 |
99.9911555410% |
11,307 |
159 |
99.9958094411% |
23,863 |
99.9886734737% |
8,829 |
158 |
99.9944812644% |
18,120 |
99.9855483883% |
6,920 |
157 |
99.9927627566% |
13,817 |
99.9816290270% |
5,443 |
156 |
99.9905490555% |
10,581 |
99.9767326626% |
4,298 |
155 |
99.9877101029% |
8,137 |
99.9706395788% |
3,406 |
154 |
99.9840854286% |
6,284 |
99.9630868216% |
2,709 |
153 |
99.9794780761% |
4,873 |
99.9537611786% |
2,163 |
152 |
99.9736475807% |
3,795 |
99.9422913506% |
1,733 |
151 |
99.9663019177% |
2,968 |
99.9282392963% |
1,394 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
150 |
99.9570883466% |
2,330 |
99.9110907427% |
1,125 |
149 |
99.9455830880% |
1,838 |
99.8902448799% |
911 |
148 |
99.9312797919% |
1,455 |
99.8650032777% |
741 |
147 |
99.9135767802% |
1,157 |
99.8345580959% |
604 |
146 |
99.8917630764% |
924 |
99.7979796890% |
495 |
145 |
99.8650032777% |
741 |
99.7542037453% |
407 |
144 |
99.8323213712% |
596 |
99.7020181412% |
336 |
143 |
99.7925836483% |
482 |
99.6400497338% |
278 |
142 |
99.7444809358% |
391 |
99.5667513617% |
231 |
141 |
99.6865104294% |
319 |
99.4803893690% |
192 |
140 |
99.6169574875% |
261 |
99.3790320141% |
161 |
139 |
99.5338778217% |
215 |
99.2605391688% |
135 |
138 |
99.4350805958% |
177 |
99.1225537500% |
114 |
137 |
99.3181130218% |
147 |
98.9624953632% |
96 |
136 |
99.1802471131% |
122 |
98.7775566587% |
82 |
135 |
99.0184693146% |
102 |
98.5647029151% |
70 |
134 |
98.8294737819% |
85 |
98.3206753694% |
60 |
133 |
98.6096601092% |
72 |
98.0419987942% |
51 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
132 |
98.3551363216% |
61 |
97.7249937964% |
44 |
131 |
98.0617279292% |
52 |
97.3657942589% |
38 |
130 |
97.7249937964% |
44 |
96.9603702812% |
33 |
129 |
97.3402495072% |
38 |
96.5045568849% |
29 |
128 |
96.9025987934% |
32 |
95.9940886433% |
25 |
127 |
96.4069734486% |
28 |
95.4246402670% |
22 |
126 |
95.8481819706% |
24 |
94.7918730337% |
19 |
125 |
95.2209669590% |
21 |
94.0914867949% |
17 |
124 |
94.5200710546% |
18 |
93.3192771207% |
15 |
123 |
93.7403109348% |
16 |
92.4711969715% |
13 |
122 |
92.8766585983% |
14 |
91.5434221090% |
12 |
121 |
91.9243288744% |
12 |
90.5324192858% |
11 |
120 |
90.8788718026% |
11 |
89.4350160914% |
9 |
119 |
89.7362682436% |
10 |
88.2484711894% |
9 |
118 |
88.4930268282% |
9 |
86.9705435536% |
8 |
117 |
87.1462801289% |
8 |
85.5995592220% |
7 |
116 |
85.6938777630% |
7 |
84.1344740241% |
6 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
115 |
84.1344740241% |
6.30297414356 |
82.5749307167% |
5.7388581000 |
114 |
82.4676075848% |
5.70372814115 |
80.9213089868% |
5.2414497373 |
113 |
80.6937708458% |
5.17967538878 |
79.1747668425% |
4.8018670064 |
112 |
78.8144666062% |
4.72020213705 |
77.3372720270% |
4.4125314534 |
111 |
76.8322499196% |
4.31634490415 |
75.4116222443% |
4.0669620824 |
110 |
74.7507532660% |
3.96051419092 |
73.4014531849% |
3.7596038872 |
109 |
72.5746935061% |
3.64626736341 |
71.3112335745% |
3.4856849025 |
108 |
70.3098594977% |
3.36812148102 |
69.1462467364% |
3.2410967685 |
107 |
67.9630797074% |
3.12139865776 |
66.9125584538% |
3.0222947235 |
106 |
65.5421696587% |
2.90209798497 |
64.6169712244% |
2.8262136810 |
105 |
63.0558595794% |
2.70678919205 |
62.2669653200% |
2.6501976543 |
104 |
60.5137031432% |
2.53252414027 |
59.8706273779% |
2.4919402788 |
103 |
57.9259687167% |
2.37676298063 |
57.4365675495% |
2.3494345790 |
102 |
55.3035150084% |
2.23731239758 |
54.9738265155% |
2.2209304558 |
101 |
52.6576534466% |
2.11227383685 |
52.4917739192% |
2.1048986302 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
100 |
49.9999999782% |
1.99999999913 |
49.9999999782% |
1.9999999991 |
99 |
47.3423465534% |
1.89905917668 |
47.5082260808% |
1.9050604034 |
98 |
44.6964849916% |
1.80820333002 |
45.0261734845% |
1.8190474693 |
97 |
42.0740312833% |
1.72634143572 |
42.5634324505% |
1.7410511155 |
96 |
39.4862968568% |
1.65251826951 |
40.1293726221% |
1.6702681161 |
95 |
36.9441404206% |
1.58589543727 |
37.7330346800% |
1.6059880144 |
94 |
34.4578303413% |
1.52573527121 |
35.3830287756% |
1.5475810473 |
93 |
32.0369202926% |
1.47138711828 |
33.0874415462% |
1.4944877660 |
92 |
29.6901405023% |
1.42227563409 |
30.8537532636% |
1.4462100941 |
91 |
27.4253064939% |
1.37789076562 |
28.6887664255% |
1.4023036061 |
90 |
25.2492467340% |
1.33777916116 |
26.5985468151% |
1.3623708477 |
89 |
23.1677500804% |
1.30153679093 |
24.5883777557% |
1.3260555472 |
88 |
21.1855333938% |
1.26880259813 |
22.6627279730% |
1.2930375921 |
87 |
19.3062291542% |
1.23925302972 |
20.8252331575% |
1.2630286642 |
86 |
17.5323924152% |
1.21259732068 |
19.0786910132% |
1.2357684429 |
85 |
15.8655259759% |
1.18857342558 |
17.4250692833% |
1.2110213007 |
84 |
14.3061222370% |
1.16694450771 |
15.8655259759% |
1.1885734256 |
83 |
12.8537198711% |
1.14749590978 |
14.4004407780% |
1.1682303146 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
82 |
11.5069731718% |
1.13003254137 |
13.0294564464% |
1.1498145914 |
81 |
10.2637317564% |
1.11437662784 |
11.7515288106% |
1.1331641064 |
80 |
9.1211281974% |
1.10036577278 |
10.5649839086% |
1.1181302847 |
79 |
8.0756711256% |
1.08785129274 |
9.4675807142% |
1.1045766896 |
78 |
7.1233414017% |
1.07669678808 |
8.4565778910% |
1.0923777776 |
77 |
6.2596890652% |
1.06677691809 |
7.5288030285% |
1.0814178174 |
76 |
5.4799289454% |
1.05797635237 |
6.6807228793% |
1.0715899553 |
75 |
4.7790330410% |
1.05018887325 |
5.9085132051% |
1.0627954070 |
74 |
4.1518180294% |
1.04331660699 |
5.2081269663% |
1.0549427583 |
73 |
3.5930265514% |
1.03726936365 |
4.5753597330% |
1.0479473616 |
72 |
3.0974012066% |
1.03196406748 |
4.0059113567% |
1.0417308129 |
71 |
2.6597504928% |
1.02732426212 |
3.4954431151% |
1.0362204981 |
70 |
2.2750062036% |
1.02327967611 |
3.0396297188% |
1.0313491967 |
69 |
1.9382720708% |
1.01976583639 |
2.6342057411% |
1.0270547348 |
68 |
1.6448636784% |
1.01672371917 |
2.2750062036% |
1.0232796761 |
67 |
1.3903398908% |
1.01409942889 |
1.9580012058% |
1.0199710454 |
66 |
1.1705262181% |
1.01184389811 |
1.6793246306% |
1.0170800762 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
65 |
0.9815306854% |
1.00991260208 |
1.4352970849% |
1.0145619785 |
64 |
0.8197528869% |
1.00826528377 |
1.2224433413% |
1.0123757196 |
63 |
0.6818869782% |
1.006865686 |
1.0375046368% |
1.0104838164 |
62 |
0.5649194042% |
1.00568128874 |
0.8774462500% |
1.0088521352 |
61 |
0.4661221783% |
1.00468305052 |
0.7394608312% |
1.0074496959 |
60 |
0.3830425125% |
1.0038451537 |
0.6209679859% |
1.0062484809 |
59 |
0.3134895706% |
1.00314475418 |
0.5196106310% |
1.0052232469 |
58 |
0.2555190642% |
1.00256173637 |
0.4332486383% |
1.0043513385 |
57 |
0.2074163517% |
1.00207847461 |
0.3599502662% |
1.0036125059 |
56 |
0.1676786288% |
1.00167960262 |
0.2979818588% |
1.0029887244 |
55 |
0.1349967223% |
1.0013517921 |
0.2457962547% |
1.0024640190 |
54 |
0.1082369236% |
1.00108354203 |
0.2020203110% |
1.0020242926 |
53 |
0.0864232198% |
1.00086497974 |
0.1654419041% |
1.0016571607 |
52 |
0.0687202081% |
1.00068767465 |
0.1349967223% |
1.0013517921 |
51 |
0.0544169120% |
1.0005444654 |
0.1097551201% |
1.0010987571 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
50 |
0.0429116534% |
1.00042930075 |
0.0889092573% |
1.0008898838 |
49 |
0.0336980823% |
1.00033709442 |
0.0717607037% |
1.0007181224 |
48 |
0.0263524193% |
1.00026359366 |
0.0577086494% |
1.0005774197 |
47 |
0.0205219239% |
1.00020526136 |
0.0462388214% |
1.0004626021 |
46 |
0.0159145714% |
1.00015917105 |
0.0369131784% |
1.0003692681 |
45 |
0.0122898971% |
1.00012291408 |
0.0293604212% |
1.0002936904 |
44 |
0.0094509445% |
1.00009451838 |
0.0232673374% |
1.0002327275 |
43 |
0.0072372434% |
1.00007237767 |
0.0183709730% |
1.0001837435 |
42 |
0.0055187356% |
1.0000551904 |
0.0144516117% |
1.0001445370 |
41 |
0.0041905589% |
1.00004190735 |
0.0113265263% |
1.0001132781 |
40 |
0.0031686035% |
1.00003168704 |
0.0088444590% |
1.0000884524 |
39 |
0.0023857510% |
1.00002385808 |
0.0068807808% |
1.0000688125 |
38 |
0.0017887159% |
1.00001788748 |
0.0053332750% |
1.0000533356 |
37 |
0.0013354097% |
1.00001335428 |
0.0041184901% |
1.0000411866 |
36 |
0.0009927560% |
1.00000992766 |
0.0031686035% |
1.0000316870 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
35 |
0.0007348917% |
1.00000734897 |
0.0024287437% |
1.0000242880 |
34 |
0.0005416953% |
1.00000541698 |
0.0018547167% |
1.0000185475 |
33 |
0.0003975903% |
1.00000397592 |
0.0014110871% |
1.0000141111 |
32 |
0.0002905787% |
1.0000029058 |
0.0010695686% |
1.0000106958 |
31 |
0.0002114643% |
1.00000211465 |
0.0008076820% |
1.0000080769 |
30 |
0.0001532337% |
1.00000153234 |
0.0006076416% |
1.0000060765 |
29 |
0.0001105640% |
1.00000110564 |
0.0004554371% |
1.0000045544 |
28 |
0.0000794353% |
1.00000079435 |
0.0003400803% |
1.0000034008 |
27 |
0.0000568267% |
1.00000056827 |
0.0002529912% |
1.0000025299 |
26 |
0.0000404789% |
1.00000040479 |
0.0001874989% |
1.0000018750 |
25 |
0.0000287105% |
1.00000028711 |
0.0001384395% |
1.0000013844 |
24 |
0.0000202763% |
1.00000020276 |
0.0001018328% |
1.0000010183 |
23 |
0.0000142583% |
1.00000014258 |
0.0000746245% |
1.0000007462 |
22 |
0.0000099834% |
1.00000009983 |
0.0000544802% |
1.0000005448 |
21 |
0.0000069602% |
1.0000000696 |
0.0000396240% |
1.0000003962 |
20 |
0.0000048317% |
1.00000004832 |
0.0000287105% |
1.0000002871 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
19 |
0.0000033396% |
1.0000000334 |
0.0000207245% |
1.0000002072 |
18 |
0.0000022984% |
1.00000002298 |
0.0000149034% |
1.0000001490 |
17 |
0.0000015750% |
1.00000001575 |
0.0000106769% |
1.0000001068 |
16 |
0.0000010746% |
1.00000001075 |
0.0000076201% |
1.0000000762 |
15 |
0.0000007301% |
1.0000000073 |
0.0000054180% |
1.0000000542 |
14 |
0.0000004938% |
1.00000000494 |
0.0000038376% |
1.0000000384 |
13 |
0.0000003326% |
1.00000000333 |
0.0000027080% |
1.0000000271 |
12 |
0.0000002230% |
1.00000000223 |
0.0000019036% |
1.0000000190 |
11 |
0.0000001489% |
1.00000000149 |
0.0000013331% |
1.0000000133 |
10 |
0.0000000990% |
1.00000000099 |
0.0000009301% |
1.0000000093 |
9 |
0.0000000655% |
1.00000000066 |
0.0000006464% |
1.0000000065 |
8 |
0.0000000432% |
1.00000000043 |
0.0000004476% |
1.0000000045 |
7 |
0.0000000283% |
1.00000000028 |
0.0000003087% |
1.0000000031 |
6 |
0.0000000185% |
1.00000000019 |
0.0000002121% |
1.0000000021 |
IQ |
15 SD Percentile |
Rarity: 1/X |
16 SD Percentile |
Rarity: 1/X |
5 |
0.0000000120% |
1.00000000012 |
0.0000001452% |
1.0000000015 |
4 |
0.0000000078% |
1.00000000008 |
0.0000000990% |
1.0000000010 |
3 |
0.0000000050% |
1.00000000005 |
0.0000000673% |
1.0000000007 |
2 |
0.0000000032% |
1.00000000003 |
0.0000000455% |
1.0000000005 |
1 |
0.0000000021% |
1.00000000002 |
0.0000000307% |
1.0000000003 |
Please send comments by e-mail to the author, Rodrigo de la Jara at .
This website © Copyright Rodrigo de la Jara. If you want to publish or otherwise disseminate anything from my site that I own the rights to, just e-mail me first, telling me where you will use it. In almost all cases, I'll give permission if I am given credit and a link to my site is given. You do not need permission to simply link to my site.